Influence of the Tumor Microenvironment on Prostate Cellular Behavior

Clayton Yates , PhD Tuskegee University Center for Cancer Research

Discovery of EMT

 First observed and defined by Elizabeth Hay in late 1960's at Harvard
 First associated with early stages of embryonic development.
 Process is reversible

MET

EMT

EMT

Loss of E-cadherin

- Increase in translational repressors (Snail or Zeb1)
- - Methylation promoter
- Secretion of proteolytic enzymes
- Gain of mesenchymal proteins
- Fibroblastic morphology
- Increased cell motility and invasion

Factors for metastatic progression

 $EMT \longrightarrow Dissemination \longrightarrow Micrometastasis \longrightarrow M-E-T$

Reversible (epigenetic)
 Environmental factors
 Location

 - bone marrow

– liver (hepatocytes)

Molecular Events of Metastasis

Nature Reviews Cancer, 2002

EGFR Modulates DU145 E-Cadherin Levels

Yates et al 2005

E-cadherin/EGFR in Co-culture

E-cadherin EGFR

Green = Hepatocytes Red= DU-145 prostate cancer Blue = Anti-E-cadherin or EGFR staining

Human PCa Mets to Liver

E-cadherin

E-cadherin

EGFR

p120

B-catenin

p-EGFR 1068

Top row = IHC with anti-E-cadherin, anti- β -catenin Bottom row = anti-p120,

Reepithelialization of PCa Mets in the Liver

Cytokeratin 18

Vimentin

ARCaP: Classic EMT Model

Prostate Cancer in Presence of Bone Stromal Cells

cadherin and N-cadherin at Day 1 and 4

E-Cadherin Expression in Prostate Cancer: A Broad Survey Using High-Density Tissue Microarray Technology

MARK A. RUBIN, MD, NEIL R. MUCCI, BS, JAY FIGURSKI, BS, ALICE FECKO, BA, KENNETH J. PIENTA, MD, AND MARK L. DAY, PHD

A total of 1,220 prostate TMA samples were analyzed. High (normal) Ecadherin expression was seen in 87% of 757 benign, 80% of 41 high-grade PIN, 82% of 325 prostate carcinoma and 90% of hormone-refractory prostate carcinoma TMA samples Clinical implications of Repithelialization during Metastatic Seeding of Tumor Microenvironment

Metastatic Seeding within Tumor Microenvironment

Josson et al 2010

Prostate/Bone stromal cells decrease Radiation Sensitivity

Β.

Josson et al 2010

Blocking Cell-Cell Adhesion Increases Radiation Sensitivity

Josson et al 2010

Blocking Cell-Cell Adhesion Increases Radiation Sensitivity

ARCaРм

ARCaPE

Establishment and Characterization of non-malignant and malignant cell lines from African American Prostate Cancer Patient.

African American Prostate Cell lines .

Table 1. Clinical features of African American and Caucasian patients of whom prostate cell lines were derived.								
Cell line	Age	Race	Morphology	Clinical Stage	Tumor Grade	Gleason Score		
RC77N	62	AA	Epithelial	Non-malignant	NA ^c	NA ^c		
RC44N	59	AA	Epithelial	Non-malignant	NA ^c	NA ^c		
RC77T	62	AA	Epithelial	Primary Adenocarcinoma	Poorly Differentiated	7		
RC44T	59	AA	Epithelial	Primary Adenocarcionma	Poorly	7		
MDA-2Pca-2b	63	AA	Epithelial	Adenocarcinoma Metastatic tumor	Differentiated NA	NA		
PrEC	59	White	Epithelial	Non-malignant	NA ^c	NA ^c		
RC-92a	57	White	Epithelial	Primary Adenocarcinoma	Well- Differentiated	3 + 3		
PC-3	62	White	Epithelial	Metastatic Adenocarcinoma	Undifferentiated	NA ^c		
AA = African American NA = not applicable								

Theodore et al 2010

NA = not applicable $NA^{c} = Not available$

Properties of Newly Established Cell lines

Table 1. Properties of RC-77T/E and RC-77N/E cell lines								
Life Span	RC-77T/E	RC-77N/E						
	>40	>40						
Gene Expression by RT-PCR								
E6	+	+						
NKX3.1	+	+						
Cytokeratin 8	+	+						
AR	+	+						
p16	+	+						
PSA	+	+						
GAPDH	+	+						
3D-organoid formation	+	-						
Tumorigenicity in SCID mice	3/3	0/3						

Figure 2

Α.

С.

Β.

i. 2 * 2 Sunna a 11 13 Ê. 8 ¢ \$ å 3 ä ł, 22 M4 **X X** 20 19 21 MB RC77N/E P3+36

ii. 10 2 M3 7 9 M2 5 f 12 11 13 1 15 63 15 MG 17 14 100 28 5 5 22 21

RC77T/E P4+35

Theodore et al 2010

The Lab

Acknowledgements

Major Collaborators

University of Pittsburgh

Alan Wells Donna Beer Stolz Glenn Papworth Chistopher Shepard Simmon Watkins

Cedars-Sani Medical Center

Leland Chung Hayien Zhau Sajni Josson

Tuskegee University

<u>Georgia State University</u> Ritu Aneja