Genomics of Prostate Cancer Health Disparity-Beyond the Gene List

R. Renee Reams, PhD

College Of Pharmacy & Pharmaceutical Sciences
Florida A&M University

Tallahassee, Florida
29 July, 2010 Uof M

Yes, I brought the band: FAMU Marching 100

Prostate Cancer

- Most commonly diagnosed male cancer
- African American Males have highest morbidity and mortality rates than any other racial and ethnic groups
- Annual CaP incidence for AA was 59% higher than that of White Males (2001-2005).
- Overall CaP incidence down, but CaP decline in AA lags behind that of White males
- Hence, CaP is a health disparity for AA men

Cause of this disparity still unclear...

Factors thought to Contribute to CaP Disparity

CAG repeats

Inadequate knowledge

Lower socioeconomics

Limited access to health care

Less likely to ID early symptoms

Poor CaP survival

Present at late stage

High Grade CaP

More aggressive CaP tumors

Different Disease Biology

Higher testosterone

Age, Race (non-modifiable factors)

Odedina, Infectious Agents & Cancer 2009, 4(Suppl):S2

Prostate Cancer

We favor the Hypothesis:

 Differences in Gene expression may explain CaP health disparity

Identified 97 Candidate Genes

- Microarray comparison of prostate tumor gene expression in African-American and Caucasian American males: a pilot project study.
- Reams RR, Agrawal D, Davis MB, Yoder S, Odedina FT, Kumar N, Higginbotham JM, Akinremi T, Suther S, Soliman KF.
- Infect Agent Cancer. 2009 Feb 10;4 Suppl 1:S3.PMID: 19208208

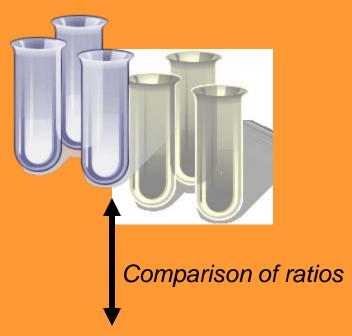
Identification of differentially expressed genes

 Filtering criteria of at least +/- 2.0 fold change AND p< 0.00001

Description of PCa Tumor Tissue

- This pilot study made use of (three) 3+3 CaP tumor & non-tumor (normal) matched control samples from African American Males and (three) 3+3 PCa tumor & matched control samples from White American males.
- Samples were obtained from Dr. Deepak Agrawal, a collaborator from H. Lee Moffitt Center via IRB approval The limitation of this study is the small number of PCa samples available

Microarray Platform


- Gene Expression data were measured using the Affymetrix GeneChip HG-U133 plus 2 arrays containing 54,000 probe sets.
- Total of 12 samples were used 3 tumor & 3 normal from AAM; 3 tumor and 3 normal from WAM.
- Data from cel files was uploade to Rbioconductor (LIMMA package or SAM used)

Experimental Design II

Case matched ratios

Caucasian

African-American

Tumor Normal

Case-matched ratios ~ test for race specific

expression trends										
	<u> </u>									
			Cau ratio 1							
11 0000 1000 1000			Cau ratio 2							
			Cau ratio 3							
			AA ratio 2 📇							
			AA ratio 1							
			AA ratio 3							
			AA ratio 4 😓							
chromosome 9 open reading frame 93	-5.288819		-2.851774							
helicase (DNA) B	4.651818	paired-like homeodomain transcription factor 1	3.531298							
cholinergic receptor, muscarinic 3	-5.047906	, , , , , , , , , , , , , , , , , , , ,	-3.983288							
zyg-11 homolog A (C. elegans)	-5.491622	chromosome 21 open reading frame 88	2.890642							
ring finger protein 187	-5.379997	tubulin tyrosine ligase-like family, member 5	4.073312							
histone deacetylase 11	-4.487602	transcription factor 12 (HTF4, helix-loop-helix transcri								
hypothetical protein LOC440295	4.920586 -	, , ,	-2.783023							
interferon regulatory factor 4	-4.214245 -	—→ myeloid/lymphoid or mixed-lineage leukemia 4	-3.80314							
paired box gene 5 (B-cell lineage specific activator)	3.166453		-4.411559							
homeobox D4	-3.859365	ring finger protein 168	4.556035							
alanine-glyoxylate aminotransferase	-4.773391	••	-3.835421							
contactin 4	4.053437	~	-3.178348							
transcription factor 3 (E2A immunoglobulin enhancer		Friend leukemia virus integration 1	2.434884							
potassium voltage-gated channel, KQT-like subfamily		· · · · · · · · · · · · · · · · · · ·	3.095944							
zinc finger protein 650	-4.522508	ADAM metallopeptidase with thrombospondin type 1	3.204275							
WD repeat domain 32	-4.752269	myelin-associated oligodendrocyte basic protein	2.572629							
inscuteable homolog (Drosophila)	-3.820665	• • • • • • • • • • • • • • • • • • •	-3.898153							
chromosome 15 open reading frame 26	-4.805246	delta-like 3 (Drosophila)	2.556212							
WD repeat domain 60	-4.202883		-4.644899							
transient receptor potential cation channel, subfamily			-3.110733							
DEAD (Asp-Glu-Ala-As) box polypeptide 19B	4.220601	BUB3 budding uninhibited by benzimidazoles 3 homo	-3.065752							

Beyond the Gene List

Gene Ontology Enrichment

GOBPID	Pvalue	OddsRat	ExpCour	Count	Size	Term
GO:0042091	0.00468		0.00468		1	interleukin-10 biosynthetic process
GO:0016340	0.00468	Inf	0.00468	1	1	calcium-dependent cell-matrix adhesion
GO:0045082	0.00468	Inf	0.00468	1	1	positive regulation of interleukin-10 biosynthetic process
GO:0045074	0.00468	Inf	0.00468	1	1	regulation of interleukin-10 biosynthetic process
GO:0007275	0.00536	2.23501	9.72558	18	2076	multicellular organismal development
GO:0048856	0.00558	2.2656	8.98071	17	1917	anatomical structure development
GO:0006478	0.00935	216.103	0.00937	1	2	peptidyl-tyrosine sulfation
GO:0035054	0.00935	216.103	0.00937	1	2	embryonic heart tube anterior/posterior pattern formation
GO:0045366	0.00935	216.103	0.00937	1	2	regulation of interleukin-13 biosynthetic process
GO:0045368	0.00935	216.103	0.00937	1	2	positive regulation of interleukin-13 biosynthetic process
GO:0032613	0.00935	216.103	0.00937	1	2	interleukin-10 production
GO:0043283	0.01001	1.9026	20.8238	30	4445	biopolymer metabolic process
GO:0048731	0.01327	2.16651	7.43942	14	1588	system development
GO:0007399	0.01366	2.76046	3.19501	8	682	nervous system development
GO:0048617	0.01399	108.043	0.01405	1	3	embryonic foregut morphogenesis
GO:0042097	0.01399	108.043	0.01405	1	3	interleukin-4 biosynthetic process
GO:0046487	0.01399	108.043	0.01405	1	3	glyoxylate metabolic process
GO:0042231	0.01399	108.043	0.01405	1	3	interleukin-13 biosynthetic process
GO:0006538	0.01399	108.043	0.01405	1	3	glutamate catabolic process
GO:0045402	0.01399	108.043	0.01405	1	3	regulation of interleukin-4 biosynthetic process
GO:0045404	0.01399	108.043	0.01405	1	3	positive regulation of interleukin-4 biosynthetic process
GO:0048096	0.01399	108.043	0.01405	1	3	chromatin-mediated maintenance of transcription
GO:0032616	0.01399	108.043	0.01405	1	3	interleukin-13 production
GO:0050847	0.01399	108.043	0.01405	1	3	progesterone receptor signaling pathway
GO:0048339	0.01399	108.043	0.01405	1	3	paraxial mesoderm development
GO:0043011	0.01399	108.043	0.01405	1	3	myeloid dendritic cell differentiation

Beyond the Gene List

New Bioinformatics Collaborator

Krishna Rani Kalari (Mayo Rochester):

Performed genotype-phenotype, SNP and expression transcript levels, correlations using HapMap Yorubi Population on the 97 genes previously revealed to be differentially expressed in BM tumors compared to WM tumors

Beyond The Gene List

Results

26527 genotype-phenotype associations were obtained with a p-value < 10-3, of which 17542/26527 associations has a p-value <10-4 (table with association results is attached below).

Genome-wide associations with a p-value < 10-3 were obtained for making Manhattan plots. Association and map files were created as input files for the Haploview software to generate Manhattan plots.

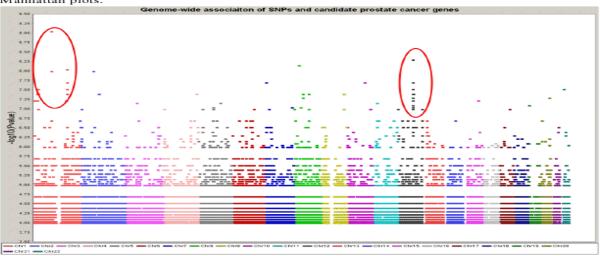


Figure 1: Results of genome-wide association SNPs with candidate prostate cancer genes using HapMap lymphoblastoid cell lines in YRI population. X-axis consists of different chromosomes and Y-axis consists of negative log p-value for association.

Association results in lymphoblastoid cell lines show that RanGAP1 gene which is a key regulator of the RAN GTP/GDP cycle that is located on chromosome 22 may be involved with

Association Results in YRI lymphoblastoid cell lines

RanGAP1 gene is located on chromosome 22 and may be involved with ABCD3 gene located on Chromosome 1

RanGAP1 gene, key regulator of the RAN GTP/GDP cycle

ABCD3 gene which is ATP-Binding cassette, subfamily member

Association Results in YRI lymphoblastoid cell lines

STXBP2 gene is located on chromosome 19 and may be involved with TMTC2 gene located on Chromosome 12

STXBP2 gene, syntaxin binding protein

TMTC2 gene a transmembrane tetraccopeptide repeat containing 2 gene

Association Results in YRI lymphoblastoid cell lines

Genome-wide results show 1167 cis interactions, where expression gene and SNP are located on the same chromosome (p< 0.03). Most cis interactions in **coding region**; possible functional role in gene expressionhence

Ingenuity Pathway Analysis Revealed 3 top Networks Hubs

- 1. ERK
- 2. MAPK
- 3. NFkB

ERK

ABCD3 gene which is ATP-Binding cassette, subfamily member that is located on chromosome 1 (Figure 1). In addition, STXBP2 gene which is a syntaxin-binding protein that is located on chromosome 19 may be involved with a region on chromosome 12. The chromosome 12 region consists of transmembrane and tetratricopeptide repeat containing 2 (TMTC2) gene that is approximately 400kb away from the region where STXBP2 gene is associated (Figure 1).

Genome-wide results also show that there are 1167 cis interactions (where expression gene and SNP are located on the same chromosome) out of 26527 associations with a p-value < 10-3. Most of the cis interaction associations are found in protein coding regions. Pathway analysis was performed using the genes that are involved with the downstream effects of SNPs along with candidate prostate cancer genes that are involved in cis regulation. Ingenuity software was used to perform the pathway analysis. This software consists of a curated database and several analysis tools to obtain pathways associated with a set of genes. Results of the Ingenuity Pathway Analysis showed that network hubs are centered on ERK, Mapk and NFkB pathways Network 1: Network cisExpGeneand SNPGene 2010-02-19 03:36 PM: Network_cisExpGeneand SNPGenelistxis: Network_cisExpGeneand SNPGeneli

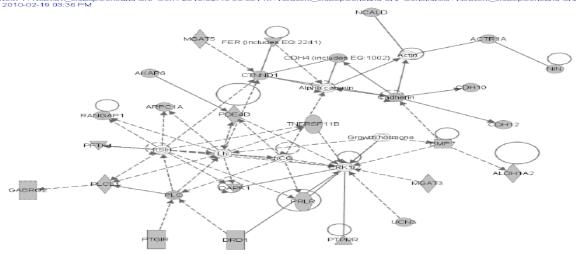


Figure 2: Network I, top network from the network analysis with the list of genes that were associated with the downstream of cis interaction SNPs using Ingenuity Pathway Analysis. Dotted line indicates an indirect connection and solid lines indicate a direction interaction between genes.

Attendance at This NCIBI

Much needed, to gain knowledge in current state of the art bioinformatic tools, Metabolomics, Proteomics

Collaorations to use NCIBI Tools to further probe this 97 candidte gene list

ACKNOWLEDGEMENTS

Florida A&M Univ

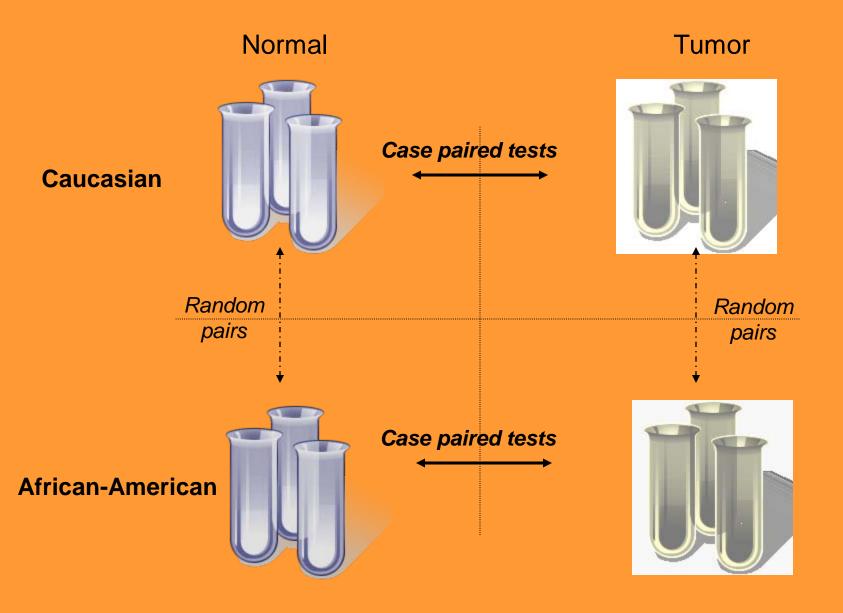
DoD FAMU Moffitt Prostate Cancer Training Center Grant

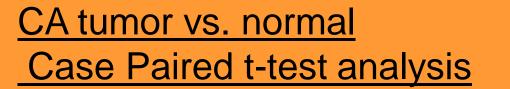
Folakemi Odedina
J. Mark Higginbotham, PhD Candidate
Univ of Chicago
Melissa B. Davis (bioinformatics)

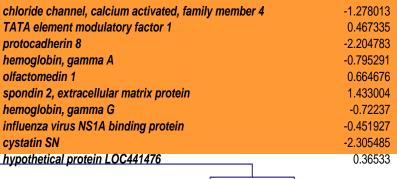
Mayo Rochester Krishna Rani Kalari (bioinformatics)

Moffitt Cancer Center
Nagi, Kumar
Deepak Agrawal
Sean Yoder
Microarray Core Facility
Tissue Bank

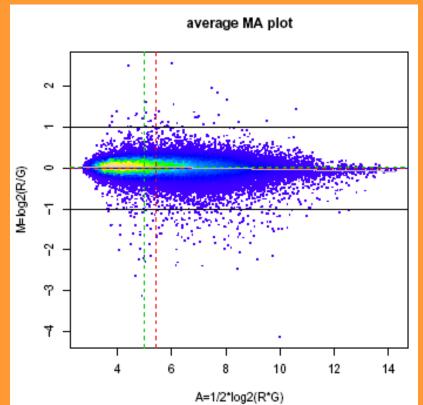
YOU ARE INVITED TO ATTEND!! **NCI Sponsored/Univ of Florida** Hosted The Science of Global Prostate **Cancer Disparities in Black Men** Aug. 27-29, 2010 **Crowne Plaza** Jacksonville, FL Welcome The Science of Global Prostate Cancer Disparities in Black Men "Bridging Gaps Through Research, Education, and Outreach Worldwide http://conferences.dce.ufl.edu /docs/GPC/UF_GPCD_Agenda.

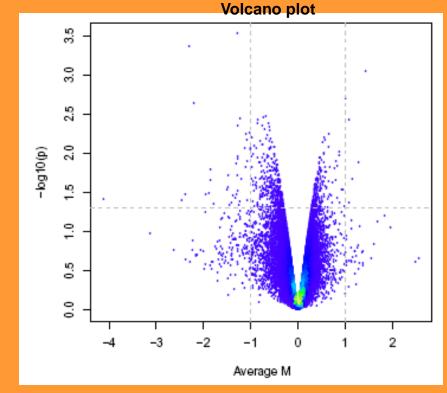

pdf




1st Biennial Conference Highlights

- Global Collaborations Among Cancer Scientists from UK, Bahamas, Africa and USA, clinicians, survivors, and advocates
- To better understand the etiology of CaP among at-risk Black Men, develop interventions to address CaP disparities
- Prof Folake Odedina won an NCI grant award to host conference and bring in international scientists
- CME credits


Experimental Design I



African American tumor vs. normal leuk alde acyl natri. Case Paired t-test analysis

Average M

leukemia inhibitory factor receptor alpha aldehyde oxidase 1 acyl-CoA synthetase medium-chain family member 3 natriuretic peptide receptor C/guanylate cyclase C (a histone cluster 1, H2bg

RAD23 homolog B (S. cerevisiae) insulin-like growth factor 1 (somatomedin C) paired related homeobox 1 prostate-specific non-coding gene

1.612491

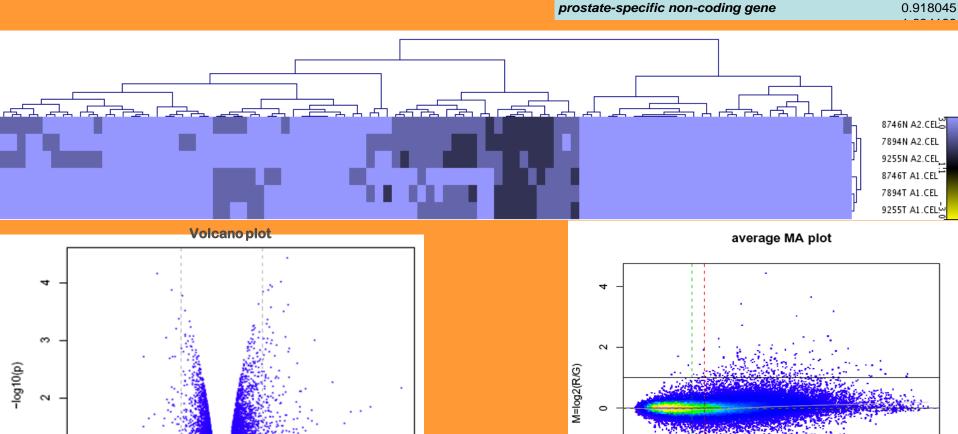
-1.582018

1.462871

1.198831

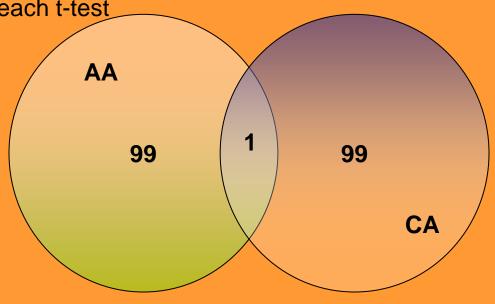
1.245253 1.148056

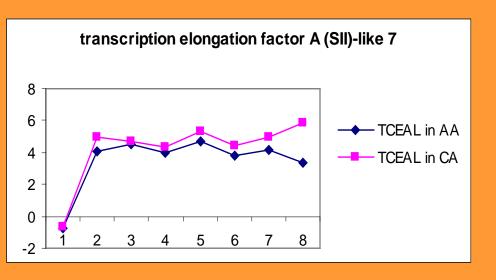
-1.22417

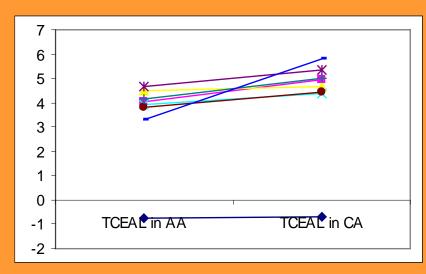

1.025239

-0.966881

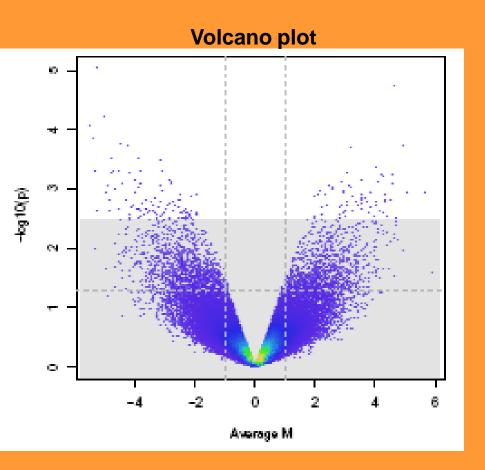
10

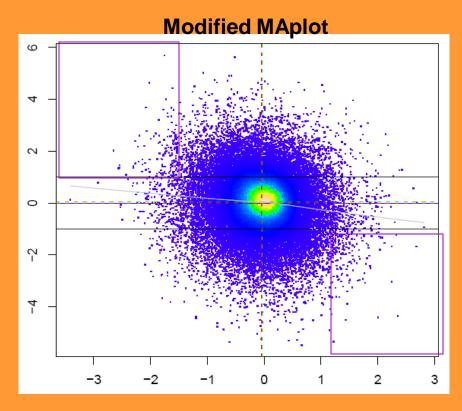

A=1/2*log2(R*G)


12



Overlaps case paired t-test Af Am. & Caucasian genelists


Top 100 genes from each t-test



Case-matched ratios ~ Race group test

