Metabolomics and the Molecular Phenotype of Obesity

Burant Lab

Mary Treutelaar Jinghua Xu Sydney Bridges Joe Dosch Cristina Lara-Castro Julian Munoz Erin Shellman Katie Overmyer Charles Evans Arun Das Jane Cao Angela Subauste Tanu Soni

IWMC

NCIB

Amy Rothberg Mitali Kapila Chritine Fowler Andrew Miller

Internal Medicine

Sub Pennathur Jaimen Byun

Chemistry Bob Kennedy Matt Lorenz Chunhai Ruan

<u>MCRU</u>

Theresa Han-Markey Bionutrition Support Metabolic Kitchen

<u>Washington University</u> Sam Klein

University of Wisconsin Robert C. and

Alan Attie

Veronica Atkins Foundation

Endowment for the

Biological Sciences

Columbia University

Sharon Wardlaw Judith Korner

NCIBI/CCMB

Alla Karnovsky Maureen Sartor H V Jagadish Terry Weymouth Tim Hull Glenn Tarcea Jing Gao Brian Athey Jim Cavalcoli

Funding DK072380 DK077200 DK089503

Clinical and Molecular Phenotyping

Systems Roles

The 'omic's

Genome

~30,000 genes

Transcriptome

~100,000 transcripts

Proteome

~1,000,000 protein forms?

~2000 to 5,000 metabolites

What is a Metabolite?

- Any organic molecule detectable in the body with a MW < ~2000 Da
- Includes peptides, oligonucleotides, sugars, nucleosides, organic acids, ketones, aldehydes, amines, amino acids, lipids, steroids, alkaloids and drugs (xenobiotics)
- Includes human & microbial products
- Concentration > 1nM*

Mass Distribution of Compounds in the Human Metabolome

Why Are Metabolites Relevant?

- Generate metabolic "signatures"
- Monitor/measure metabolite flux
- Monitor enzyme/pathway kinetics
- Assess/identify phenotypes
- Monitor gene/environment interactions
- Track effects from toxins/drugs/surgery
- Monitor consequences from gene KOs
- Identify functions of unknown genes

Metabolites are the Canaries of the Genome

Why Are Metabolites Relevant?

- Generate metabolic "signatures" for disease states or host responses
- Obtain a more "holistic" view of metabolism (and treatment)
- Accelerate assessment & diagnosis
- More rapidly and accurately (and cheaply) assess/identify disease phenotypes
- Monitor gene/environment interactions
- Rapidly track effects from drugs/surgery

The Technology of Metabolomics

Separations Based Metabolomics Platforms

	CE-MS	GC-MS	LC-MS
AD	Small Injection Volumes	High resolution	Soft ionization
		Library ID	Full metabolome
	High Resolution		coverage
DA	Low capacity	Chemical derivitization	Limited structural info
	Difficult MS interface	Harsh ionization	Lower Resolution
	Requires charged analytes	Limited metabolite applicability	

ALL ESI-MS Methods Are Subject to Ion Suppression
Response Factors of Analytes are Not Equal

Adapted From: Want, E. J.; Cravatt, B. F.; Siuzdak, G., *ChemBioChem* **2005**, 6, 1941 – 1951 Adapted From: Villas-Boas, S. G.; Mas, S.; Akesson, M.; Smedsgaard, J.; Nielsen, J., *Mass Spectrom Rev* **2005**, 24, (5), 613-46 11

Relative risk of health problems associated with obesity

Greatly increased (relative risk >>3)

- Diabetes
- Gall bladder disease
- Hypertension
- Dyslipidemia
- Insulin resistance
- Breathlessness
- Sleep apnea

Moderately increased (relative risk 2-3)

- Coronary heart disease
- Osteoarthritis (knees)
- Hyperuricemia and gout

Slightly increased (relative risk 1-2)

- Cancer (breast cancer in postmenopausal women, endometrial cancer, colon cancer)
- Reproductive hormone abnormalities
- Polycystic ovary syndrome
- Impaired fertility
- Low back pain
- Increased anesthetic risk
- Fetal defects arising from maternal obesity

Excess U.S. Medical Costs Related to Abnormal Body Weight

Int J Obesity 2005;29:334-339

Environmental effects...

DBP: Metabolomics and Obesity

Investigational Weight Management Clinic Nutrition Obesity Research Center Demonstration Unit

- Primary goal: Develop tools for multiscalar integration of clinical, behavioral and molecular phenotyping data in a clinical setting.
- Insurance-supported clinical care for 400 obese patient
- Undertaking a variety of studies related to nutrition and obesity
- Michigan Nutrition Obesity Center Demonstration Unit project: Broad phenotyping at baseline, 3 months, 24 months for 400 obese and baseline studies in100 lean (BMI < 27).

Phenotypic response to diets

Lipomic assessment of plasma

Palmitoleate, Glucose and Insulin Sensitivity

Correlations between HOMA and 16:1 levels in CE

Identification of a Lipokine, a Lipid Hormone Linking Adipose Tissue to Systemic Metabolism

Haiming Cao,¹ Kristin Gerhold,^{1,3} Jared R. Mayers,¹ Michelle M. Wiest,² Steven M. Watkins,² and Gökhan S. Hotamisligil¹ "Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA "Lipomics Technologies, West Sacramento, CA 95691, USA

Present addresses: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94703, USA 'Correspondence: ghotamis@hsph.harvard.edu DOI 10.1016/j.cell.2008.07.048

Phenotyping of Patients

Phenotyping:Investigational Weight Management Clinic (Rothberg)and AnalysisLaboratory for Physical Activity and Exercise Intervention Research (Gordon)MMOC Human Phenotyping Core (Horowitz)MMOC Molecular Phenotyping Core (Burant)NCIBI/CCMB (Athey, Cavalcoli)

- <u>Anthropometric tests</u>. Height, weight, blood pressure, heart rate, temperature, skin fold thickness, waist-to-hip ratio, skin fold thickness. Dual Energy X-Ray Absorptiometery (DEXA, new).
- <u>Metabolic Assessment</u>. VO₂peak, resting metabolic rate (RMR) and R/Q measurement. Oral glucose tolerance tests (for those without a diagnosis of diabetes), Total cholesterol, LDL, HDL, triglycerides, free fatty acid, insulin (at 0 and 30 and 120 minutes of oGTT), leptin, adiponectin, C-Reactive Protein.
- <u>Peripheral Blood Metabolomic Assessment (including lipomics)</u>. The pattern of metabolite levels will be determined, including fatty acid profiles of lipid subclasses in EDTA collected plasma
- <u>Peripheral Blood Transcriptomic Assessment</u>. Fasting blood collected for RNA expression will be collected in PaxGene tube
- <u>Genomic Assessment</u>. DNA will be isolated from peripheral blood for assessment of DNA polymorphisms related to obesity *and ability to lose weight* (Boehnke, not funded).
- <u>Muscle and adipose tissue biopsy metabolite and transcript analysis</u>. Biopsies will be performed on the vastus lateralis muscle and anterior abdominal fat.
- <u>Behavioral assessment</u>. *4-Day Food Intake Record*. A Depression inventory (Beck Depression (BD-II) 21 item questionnaire or Zung Self-Rating Questionnaire).

Gastric Bypass and Gastric Banding

Pre-operative Medications

Post-operative Medications

Weight Maintenance after Bariatric Surgery

Gastric Bypass and Gastric Banding

Early Clinical Effects

Int J Obes (Lond). 34:462-471, 2010

Differentiating Roux-en-Y and Gastric Banding-30 min of MMTT

RnY/GB	RnY/GB	
Before Sx	After Sx	Metabolite
1.176728 2.852039	14.33873 6.798669	Asparagine Phenyl sulfate
1.31608	2.222061	5-[2-(hydroxymethyl)-5-methylphenoxy]-2,2- dimethyl-Pentanoic acid (Gemfibrozil M4)
1.966002 1.079641 0.932653 0.786977 0.782593 1.323149 4.808725	2.107524 2.097368 1.984876 1.876784 1.874516 1.744332 1.620464	2-Hydroxyethinylestradiol docusate beta-D-Fucose Lactate D-Glucose Citric acid trihydroxyoctadecenoic acid
1.340463	1.536745	1D-Myo-inositol 1,3,4,5-tetrakisphosphate
1.703495 0.91429 1.844499 1.77825 1.656207 0.461833 1.271909	1.519994 1.479224 1.468781 1.444315 1.142015 1.083051 1.054801	2-Aminopropiophenone hydroxy capric acid 2-Hydroxymestranol Pro Lys Pro Glu His Creatine Mono-N-depropylprobenecid
1.152962 1.479468	1.050375 1.041754	GPEtn(16:0/22:4(7Z,10Z,13Z,16Z)) Ribitol
1.221211	1.035339	1-eicosanoyl-2-(11Z,14Z-eicosadienoyl)-sn- glycerol
0.829258 1.020315	0.947206 0.943904	GPEtn(18:0/18:3(9Z,12Z,15Z))[U] D-Glucose
2.105966	0.764784	6,9-hexadecadienoic acid
1.014266 0.886469 0.872243 0.668707 0.672242 0.706845 0.660295 1.681267 1.637326	0.763771 0.75287 0.722102 0.67994 0.637524 0.633441 0.600171 0.596823 0.583346	N-(2-phenoxy-ethyl) arachidonoyl amine Allopregnanalone sulfate GPEtn(18:1(11Z)/18:1(9Z))[U] Dihydrodipicolinic acid Amiloride undecenoic acid Glutamic Acid Arginine Lauric acid
0.286136 0.93842 1.992268	0.569132 0.533196 0.510135	2-Hydroxy-3-(4-methoxyethylphenoxy)- propanoic acid GPIns(18:1(9Z)/18:1(9Z)) GPCho(O-12:0/O-12:0[U])
2.034236	0.487977	1-(92-hexadecenoyl)-2-(92,122- heptadecadienoyl)-sn-glycerol
0.602441	0.428638	Methylprednisolone succinate
0.191259	0.410316	2,4-Dihydroxybutyric acid

Potential effects of increased dietary protein to enhance weight loss

Amino Acid Effects

- Postprandial meal-induced visceral signals
- Release of PYY and other enteric hormones
- Vagal nerve stimulation
- Direct action of amino acids in the brain

Mixed Meal Tolerance Test: Pre and Post Weight Loss

Each represents the time course of the indicated metabolite/hormone following administration of 250 ml of Ensure as a mixed meal tolerance test (0,30,60,90,150 minutes)

Mixed Meal Tolerance Test: Pre and Post Weight Loss

Mixed Meal Tolerance Test: Amino Acid Dynamics

Change in Amino Acid dynamics following Roux-en-Y gastric bypass

Cerebral Spinal Fluid Amino Acids

Can the CSF protect its amino acid levels?

- Assess Plasma and CSF Amino Acid and Lipid Profiles at baseline and following 10% weight loss.
- Defined Diet for 72 hrs. prior to sampling.

Obese individuals have elevated plasma levels of amino acids (and other nutrients)

Obese	Lean	P value
n = 74	n = 67	
281.4 (249.2, 332.9)	235.3 (204.1, 257.0)	< 0.0001
170.0 (150.2, 200.8)	149.0 (132.5, 176.6)	< 0.0001
118.4 (91.4, 143.7)	81.2 (66.7, 95.2)	< 0.0001
282.6 (245.6, 319.6)	328.4 (265.6, 403.0)	0.0007
433.4 (394.5, 492.3)	367.3 (297.1, 420.0)	< 0.0001
72.6 (66.3, 78.9)	61.6 (55.1, 68.8)	< 0.0001
79.5 (68.5, 90.0)	67.1 (56.7, 73.5)	< 0.0001
20.1 (17.3, 23.8)	16.5 (13.5, 19.7)	< 0.0001
135.2 (116.5, 148.5)	115.3 (101.6, 137.0)	0.0007
32.0 (27.9, 40.3)	36.3 (30.5, 40.7)	0.04
	Obese n = 74 281.4 (249.2, 332.9) 170.0 (150.2, 200.8) 118.4 (91.4, 143.7) 282.6 (245.6, 319.6) 433.4 (394.5, 492.3) 72.6 (66.3, 78.9) 79.5 (68.5, 90.0) 20.1 (17.3, 23.8) 135.2 (116.5, 148.5) 32.0 (27.9, 40.3)	ObeseLean $n = 74$ $n = 67$ $281.4 (249.2, 332.9)$ $235.3 (204.1, 257.0)$ $170.0 (150.2, 200.8)$ $149.0 (132.5, 176.6)$ $118.4 (91.4, 143.7)$ $81.2 (66.7, 95.2)$ $282.6 (245.6, 319.6)$ $328.4 (265.6, 403.0)$ $433.4 (394.5, 492.3)$ $367.3 (297.1, 420.0)$ $72.6 (66.3, 78.9)$ $61.6 (55.1, 68.8)$ $79.5 (68.5, 90.0)$ $67.1 (56.7, 73.5)$ $20.1 (17.3, 23.8)$ $16.5 (13.5, 19.7)$ $135.2 (116.5, 148.5)$ $115.3 (101.6, 137.0)$ $32.0 (27.9, 40.3)$ $36.3 (30.5, 40.7)$

Summary

Metabolomic measurements can provide clues to the dynamic relationship between genes and environment in people

The metabolome is complex and changes appear coordinated

Statistical and visualization methods can provide otherwise hidden relationships between phenotypic characteristics